Constellation-X and Supernova Remnants

John P. Hughes Rutgers University

Con-X Science Objectives

- Map abundances and velocity distributions
 - Extended SNRs
 - Species: Carbon to Zinc
 - ♣Trace elements: P, Cl, K, Ti, Cr, Mn, Ni
- Identify and study sites of cosmic ray acceleration in young SNRs
- Type SNRs in external galaxies (at the distance of Virgo ... according to web site)
 - M31/M33 possible, but not much further

Additional Topics

- v Shock Physics
 - Initial electron/proton/ion temperature equilibration
 - Timescale for subsequent temperature equilibration post-shock
 - Evolution of gas phase elemental abundances
- v Pulsar wind nebula (PWN) and SNR interactions and evolution
- Galactic Center and Galactic Ridge

Example Con-X Science Cases

- Core collapse SNR: G292.0+1.8
 - O-rich in optical; O-, Ne-, & Mg-rich in X-rays
 - High velocity ejecta: v~1000 km/s
 - 135-ms pulsar and PWN
- Type Ia SN Remnant: DEM L71
 - Fe-rich ejecta in center surrounded by shocked ISM – measure Fe expansion velocity
 - Te/Tp temp. equilibration at ISM shock
- Clumping in Remnants of SN Ia

Oxygen-Rich SNR G292.0+1.8

Age~3000 yrs, 137 ms pulsar

Hughes et al. 2001, Park et al 2001, Gonzalez & Safi-Harb 2003, Park et al. 2003

Oxygen-Rich SNR G292.0+1.8

Normal Composition, CSM

Central bright bar, n_e~40 cm⁻³ (an axisymmetric stellar wind?)

Thin, circumferential filaments enclose ejecta-dominated material (red/blue supergiant wind boundary?)

Blast wave $n_e \sim 0.2-0.5$ cm⁻³

Oxygen-Rich SNR G292.0+1.8

Ejecta

Rich in O, Ne, and Mg, some Si
[O]/[Ne] < 1
No Si-rich or Fe-rich ejecta, like in Cas A
Nucleosynthesis during hydrostatic evol.
of 20-25 solar mass progenitor

Core Collapse SN Science

What is the interaction between the PWN and the SNR in G292.0+1.8?

Pressure in PWN < 10⁻⁹ dyne/cm²

Pressure in ejecta/shocked CSM: 6x10⁻⁹ to 9x10⁻⁸ dyne/cm²

Conclusion: PWN is sweeping up unshocked cold ejecta.

We see no optical- or X-ray-emitting Fe-rich ejecta in this remnant (unlike Cas A). Is it because the Fe lies in this region of cold ejecta between the PWN and the reverse shock? Use Con-X's high sensitivity to detect this cold material in absorption against the background synchrotron nebula. This would be a useful probe of this material and would confirm the evolutionary state of the PWN/SNR.

Hughes et al. 2003, ApJL, 591, L139

Van der Swaluw et al. 2001, A&A, 380, 309

Contrasting Views of G292.0+1.8

LMC SNRs: Integrated Abundances

From fits to ASCA global X-ray spectra of evolved LMC remnants

Hughes, Hayashi, & Koyama 1998, ApJ, 505, 732

DEM L71: Fe-Rich Ejecta

Hughes, Ghavamian, Rakowski, & Slane 2003, ApJ, 582, L95

Middle-aged LMC SNR -36" (8.7 pc) in radius

-4,000 yrs old

Properties of DEM L71 Ejecta

- √ Outer rims: lowered abundances, ~0.2 solar (LMC ISM).
- v Core: enhanced Fe abundance, [Fe]/[O] > 5 times solar (ejecta)
- v Thick elliptical shell, 32" by 40" across (3.9 pc by 4.8 pc)
- v Dynamical mass estimate

$$r' \sim 3.0$$
 $M_{ej} = 1.1 M_{ch} (n/0.5 cm^{-3})$

v EM mass estimate

$$EM \sim n_e n_{Fe} V$$

 $M_{Fe} < 2 M_{sun}$

Main error: source of electrons

Fe-rich, low mass → SN la

Velocity low ~ 100 km/s

Contrasting Views of DEM L71

DEM L71: Shock Physics

Nonradiative Balmer-dominated shock Measure post-shock proton temperature

X-ray emission from thermal bremsstralung Measure post-shock electron temperature

Constraining the Electron Temperature

- Fit plasma shock models to 3 spatial zones to follow evolution of T_e
- $_{\rm V}$ Study 5 azimuthal regions with sufficient Chandra statistics and broad H α component
- Available data cannot constrain T_e gradients
- Data do determine mean T_e
- Suggest partial to complete temperature equilibration

Rakowski, Ghavamian, & Hughes 2003.

Nonradiative Balmer Shocks

Ghavamian, Rakowski, Hughes, and Williams 2003.

- Nonradiative means that a radiative (cooling) zone does not form
- Low density (partially neutral) gas
- v High velocity shocks
- Narrow component: cold H I overrun by shock, collisionally excited
- Broad component: hot postshock protons that charge exchange with cold H I

(Chevalier & Raymond 1978; Chevalier, Kirshner, & Raymond 1980)

Width of broad component yields post shock proton temperature

16

Results on T_e/T_p from DEM L71

- Shows trend: higher equilibration for slower shocks
- $_{ extsf{v}}$ X-ray/Hlpha results consistent with other purely Hlpha ones

Identifying Remnants of SN Ia

- Balmer-dominated SNRs (partially neutral ISM)
- Ejecta abundances (Si and Fe rich, poor in O and Ne)
- Remnant structure (uniform ISM, "smoother" ejecta, modest spectral variation)

SN la Spectra and Abundances

W7: Nomoto et al 1984, Thielemann et al 1993

WDD3: Iwamoto et al 1999

Case H & S (Spectral fit): Warren & Hughes 2003

Getting to the Physics of SNe la

- Some variation in SN la explosion mechanism needed to explain light curves (e.g., density when flame speed transitions from deflagration to detonation)
- Strong compositional differences for different explosion types
- Manifested at different times during evolution of SNR (Badenes et al. 2003)
- Tycho, E0509-67.5, and DEM L71
 X-ray spectra favor delayed detonation models

Origin of SN la Ejecta Clumps

Chandra spectrum of brightest isolated clump in E0509-67.5

Warren & Hughes 2003, ApJ, submitted

Clumps originate in region between Si+S and Fe rich zones where nickel bubble pushes

- Bright clump in E0509-67.5 shows
 Fe enhanced by only factor of ~2
- Clumps along eastern edge of Tycho show varying ratios of Si+S/Fe abundances (Decourchelle et al. 2001)
- No evidence for pure Si or Fe clumps

Constellation-X Capabilities: Requirements for SNR studies

- Spatial resolution
 - <5" (minimum for LMC SNRs)</p>
- Field of view
 - 15' or more for Galactic SNRs
- V High count rate tolerance
 - Weak lines in bright sources
- Spectral resolution
 - Velocity resolution ~100 km/s (from DEM L71 Fe ejecta)
- Significant low energy (< 1keV) response</p>
 - Many SNRs have kT<1 keV

SNR 0103-72.6

Park, et al 2003, ApJ, in prep.

- v Middle-aged SNR
 - 87" (25 pc) in radius
 - > 10,000 yrs old (?)
- v Circular rim
 - SMC composition
- v Central bright region
 - O, Ne, Mg, Si-rich ejecta
 - No Fe enhancement

